

Complete user creation of custom control strategies through TAC I/A Series WorkPlace Tech Tool software adapts the MN 800 Series Controller to virtually any HVAC control sequence or mechanical system.

- LonWorks compatible applications are completely programmable.
- Backed-up time clock provides true standalone direct digital control with optimum start stop, scheduling functions, and backedup RAM.
- Functions as part of a LonWorks FTT-10 Free Topology communications network.
- Separate sensor bus (S-Link) supported to facilitate communications to a TAC MicroNet wall sensor.
- Provides basic trend of up to 24 points within the application. Trend maintains last 48 analog samples or digital changes of state with time stamp. Analog sampling adjustable time rates.
- WorkPlace Tech Tool is capable of reconfiguring and editing application configuration data to fit a wide range of control requirements.
- Interoperability achieved using LonWorks Standard Network Variable Types (SNVTs).

TAC MicroNet 800 Series Controllers

The TAC I/A MicroNet 800 Series Controllers are programmable, interoperable, LonWorks® based control devices.

The MN 800 Series Controller features eight universal inputs, four analog outputs, eight digital outputs, a 5.1 volt reference, LED indication, and support for TAC MicroNet MN-Sx Sensor Link (S-Link) sensors. Additionally, network capability is provided through the use of a FTT-10 transceiver allowing the controller to communicate to other devices as part of a LonWorks ® Free Topology Communications network. A direct connection to a WPA-LON WorkPlace Communication adapter and a PC with WorkPlace Tech Tool software is necessary to download and modify applications.

Designed for new or existing systems, the MN 800 Series Controller may be used in large TAC I/A Series MicroNet Systems, as well as with stand alone applications. When programmed using WorkPlace Tech Tool or loaded with a previously designed application, it provides control strategies for a wide variety of mechanical equipment. Typical applications include central station air handlers, VAV air handlers, fan coil units, unit ventilators, and cooling towers.

The WorkPlace Tech Tool software is used to program the controllers or to download applications. The MN 800 Series Controller offers the advantages of standalone or networked control. Using a TAC I/A Series MicroNet sensor (MN-Sx Series), the operator can monitor controller performance and edit operational values.

Table-1 Model Chart.

Model	Mounting Type	Backed-up Time Clock	Dimensions (in.) H x W x D
ENCL-MZ800-WAL	Wall		10-7/8 x 8-1/2 x 4-1/4
ENCL-MZ800-PAN	Panel	_	10-5/8 x 8-1/2 x 4-1/8
MNL-800-101	Card	Yes	_

Table-2 Inputs from MN-Sx TAC I/A Series MicroNet Sensor.

Inputs	Description	MN-Sx Sensor
Space Temperature	32 to 122 °F (0 to 50 °C)	MN-S1, MN-S1HT, MN-S2, MN-S2HT, MN-S3, MN-S3HT, MN-S4, MN-S4HT, MN-S4-FCS, MN-S4HT-FCS, MN-S5 and MN-S5HT
Space Humidity	5 to 95% RH, Non-condensing	MN-S1HT, MN-S2HT, MN-S3HT, MN-S4HT, MN-S4HT-FCS, and MN-S5HT
Adjustable Setpoint	40 to 95 °F (4 to 35°C)	MN-S3, MN-S3HT, MN-S4, MN-S4HT, MN-S4-FCS, MN-S4HT-FCS, MN-S5, and MN-S5HT
Override Pushbutton	For standalone occupancy control or remote status monitoring of local status condition.	MN-S2, MN-S2HT, MN-S3, MN-S3HT, MN-S4, MN-S4HT, MN-S5, and MN-S5HT
Fan Operation and Speed	Fan mode selection: On, Speed (Low/Medium/High), or Auto.	MN-S4, MN-S4HT, MN-S4-FCS, MN-S4HT-FCS, MN-S5, and MN-S5HT
System Mode	System mode selection: Heat, Cool, Off, or Auto.	MN-S4, MN-S4HT, MN-S5, and MN-S5HT
Emergency Heat	Emergency heat mode selection: Enable or Disable	MN-S5 and MN-S5HT

Communications

LonWorks Networks

A LonWorks communications network uses an FTT-10 Free Topology configuration. Controllers on a LonWorks network can communicate with each other in a peer-topeer fashion. A LonWorks network has a communications speed of 78k baud, using unshielded, twisted-pair cabling, with connections that are not polarity sensitive.

S-Link

A Sensor Link (S-Link) communications wiring provides power and a communication interface for an MN-Sx TAC I/A Series MicroNet sensor. The various MN-Sx sensors can provide room temperature, room humidity, setpoint adjustment, and occupancy override. This connection uses two-wire, unshielded cable and is not polarity sensitive. Maximum wire length allowed between a controller and a TAC I/A Series MicroNet Sensor is 200 ft (61 m).

SPECIFICATIONS

Microprocessor

SAF-C161, 10 MHz clock speed, 16-bit word size.

MEMORY

EPROM 512 kbytes.

RAM 128 kbytes.

EEPROM 32 kbytes.

Power Supply Input

20.4 to 30 Vac, 50/60 Hz.

Maximum Power Consumption

20 VA at 24 Vac, 50/60 Hz.

Surge Immunity Compliance

ANSI C62.41 (IEEE-587, Category A & B).

EN61000-4-5 Surges per EN50082-1.

AGENCY LISTINGS

FCC Part 15, Class B.

UL Listed to UL-916 (File # E71385 Category PAZX).

CUL UL listed to Canadian Safety Standard (CAN/CSA C22.2).

Canadian Department of Communications, Class B.

European Community – EMC Directive EN55022 (Emissions, Class A).

EN55014 (RF Disturbance due to switching devices as applied per EN50081-1).

EN60555-2 (AC Mains Power Line Harmonics as applied per EN50081-1).

EN60555-3 (AC Mains Power Line Voltage-variation as applied per EN50081-1)

EN61000-4-2 (Electrostatic Discharge as applied per EN50082-1).

EN61000-4-3 (RF Immunity as applied per EN50082-1).

EN61000-4-4 (Electrical Fast Transients as applied per EN50082-1).

EN61000-4-5 (Surges as applied per EN50082-1).

EN61000-4-6 (Radio frequency-common mode as applied per EN50082-1).

EN61000-4-11 (AC Mains Voltage Dips & Interruptions as applied per EN50082-1).

AMBIENT LIMITS

Operating Temperature

-40 to 140 °F (-40 to 60 °C).

Shipping and Storage Temperature

-40 to 160 °F (-40 to 71 °C).

Humidity

5 to 95% RH, non-condensing.

Backup Clock/RAM

3 days (rechargeable) at 77 °F (25 °C).

Backed-up Time Clock

Accuracy +/-150 sec/mo at 77 °F (25 °C).

Maximum Pulse Count Rate

10 per second (50 msec. minimum On or Off time per pulse) to 1 per 4 minutes (IN1 only).

1 per second (0.5 sec. minimum On or Off time per pulse) to 1 per 4 minutes (IN2 - IN8).

Analog to Digital Conversion Resolution 12 bit.

ANALOG OUTPUTS

Quantity 4.

Type

0-20 mA range programmable source into 80 to 550 ohm load, momentary short circuit protection.

Digital to Analog Conversion Resolution 8bit.

DIGITAL OUTPUTS

Quantity 8.

Contact Ratings

30 VA at 24 Vac, pilot duty. 120 VA at 120 Vac, pilot duty.

Contact Type

Form C (SPDT) isolated.

Status Indication

Light emitting diode.

Voltage Reference

5.1 Vdc, 20 mA maximum.

MOUNTING REQUIREMENTS

ENCL-MZ800-WAL

NEMA 1 location.

ENCL-MZ800-PAN

Control compartment of controlled equipment.

INPUTS (FROM TAC I/A SERIES MICRONET SENSOR)

Space Temperature

32 to 122 °F (0 to 50 °C).

Space Humidity

5 to 95% RH, non-condensing.

Adjustable Setpoints

40 to 95 °F (4.4 to 35 °C).

Operational Mode

Heat/Cool/Auto/Off.

Override Pushbutton

For stand-alone occupancy control or remote status monitoring of local status condition.

Emergency Heat Pushbutton

Emergency heat mode selection. Enable or disable.

Fan

High/Med/Low.

UNIVERSAL INPUT

Quantity 8.

1K ohm Balco Input

-40 to 250 °F (-40 to 121 °C) range. TSMN Series or equivalent.

1K ohm Platinum Input

-40 to 240 °F (-40 to 116 °C) range. TSMN Series or equivalent.

1K ohm Copper Input

-31 to 240 °F (-35 to 116 °C) range TS-5600 Series or equivalent.

10K ohm Thermistor w/ 11K ohm Shunt Resistor

-40 to 250 °F (-40 to 121 °C) range. TSMN Series or equivalent.

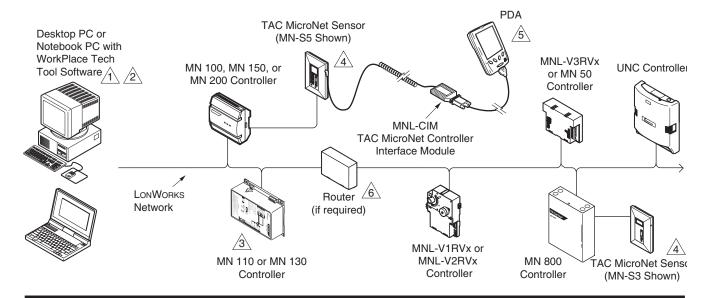
Ohms

1000 ohm resistance (0-1500 ohm) 10,000 ohm resistance (0-10,500 ohm).

Potentiometers

1000 to 15000 ohm resistance using 5.1 volt reference.

Voltage


0 to 5 Vdc.

Current

0 to 20 mA requires an external 250 ohm shunt resistor.

Digital Input

Dry Contact. Detection of closed switch requires less than 300 ohm. Detection of open switch requires more than 1.5K ohm.

A PC can be connected to the LonWorks TP/FT-10 Network, either directly or through the LonWorks network jack of a LonWorks controller or MN-Sxxx Wall Sensor. The PC must have an Echelon® LonTalk® adapter card.

Programming any of the TAC I/A Series controllers, or the TAC I/A Series MN 800 controller, requires WorkPlace Tech Tool.

This controller is not suitable for exposed mounting on a wall or panel, or in any other easily accessible place due to the possibility of personal contact with the high-voltage terminals. It must be mounted inside a suitable grounded metal enclosure.

TAC MicroNet Sensors can be connected to any MN controller.

5 A PDA running the Pocket TAC I/A interface software may be used to communicate with TAC MicroNet I/A Series controllers.

 $\sqrt{6}$ When routers are used, WP Tech is able to communicate through them to any of the TAC I/A Series devices on the network.

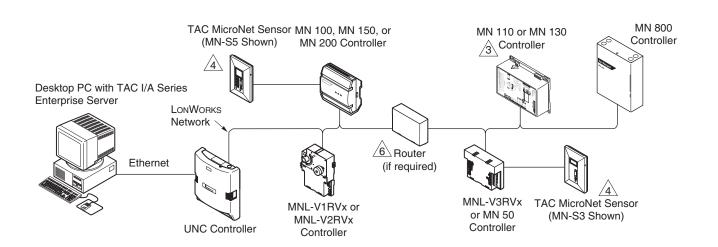


Figure-1 TAC I/A Series MicroNet LONWORKS MN 800 Series Controller Connectivity.

Copyright © 2006, TAC

All brand names, trademarks and registered trademarks are the property of their respective owners. Information contained within this document is subject to change without notice. All rights reserved.

F-26627-3

1354 Clifford Avenue

Loves Park, IL 61132-2940

PO Box 2940

Distributed, manufactured, and sold by TAC. I/A Series trademarks are owned by Invensys Systems, Inc. and are used on this product under master license from Invensys. Invensys does not manufacture this product or provide any product warranty or support. For service, support, and warranty information, contact TAC at 1-888-444-1311.

